Title: Model-constrained deep learning approaches for inference, control, and uncertainty quantification.
Abstract: The fast growth in practical applications of machine learning in a range of contexts has fueled a renewed interest in machine learning methods over recent years. Subsequently, scientific machine learning is an emerging discipline which merges scientific computing and machine learning. Whilst scientific computing focuses on large-scale models that are derived from scientific laws describing physical phenomena, machine learning focuses on developing data-driven models which require minimal knowledge and prior assumptions. With the contrast between these two approaches follows different advantages: scientific models are effective at extrapolation and can be fit with small data and few parameters whereas machine learning models require “big data” and a large number of parameters but are not biased by the validity of prior assumptions. Scientific machine learning endeavours to combine the two disciplines in order to develop models that retain the advantages from their respective disciplines. In this talk, we discuss the following:
a) the potential of neural networks for computational engineering and sciences?
b) a model-constrained neural network framework for forward/inverse problems.
Bio: Tan Bui-Thanh is an associate professor, and the endowed William J Murray Jr. Fellow in Engineering No. 4, of the Oden Institute for Computational Engineering & Sciences, and the Department of Aerospace Engineering & Engineering mechanics at the university of Texas at Austin. Bui-Thanh obtained his PhD from the Massachusetts Institute of Technology in 2007, Master of Sciences from the Singapore MIT-Alliance in 2003, and Bachelor of Engineering from the Ho Chi Minh City University of Technology (DHBK) in 2001. He has decades of experience and expertise on multidisciplinary research across the boundaries of different branches of computational science, engineering, and mathematics. Bui-Thanh is currently the elected vice president of the SIAM Texas-Louisiana Section, and the elected secretary of the SIAM SIAG/CSE. Bui-Thanh was an NSF early CAREER recipient, the Oden Institute distinguished research award, and a two-time winner of the Moncrief Faculty Challenging award.